1 |
M. Naznine, M. Nahiduzzaman, M. J. Karim, M. F. Ahamed et al., |
PLDs-CNN-Ridge-ELM: A parallel lightweight two stage waste classification model guided by SHAP |
Engineering Application in Artificial Intelligence | IF: 7.5, Q1 | (Under Review) |
2025 |
Journal |
2 |
M. F. Ahamed et al., |
Explainable Deep Learning for Rainfall Prediction: A CNN-XGBoost Hybrid Approach in the Northern Region of Bangladesh |
IEEE ACCESS | I.F: 3.4, Q1 | (Under review) |
2025 |
Journal |
3 |
M. F. Ahamed et al., |
Transparent and Trustworthy Student Engagement Detection: A Real-Time Approach Using Explainable YOLO Variants |
Computers and Education Open| I.F.: 4.2, Q1 | (Under review) |
2025 |
Journal |
4 |
M. Nahiduzzaman; M. F. Ahamed et al. |
An Automated Waste Classification System Using Deep Learning Techniques: Toward Efficient Waste Recycling and Environmental Sustainability |
Knowledge-Based Systems, Elsevier | I.F: 8.8, Q1 |
2025 |
Journal |
5 |
M. Nahiduzzaman; L. F. Abdulrazak; H. B. Kibria; A. Khandakar; M. A. Ayari; M. F. Ahamed; M. Ahsan; M. A. Moni |
A Hybrid Explainable Model Based on Advanced Machine Learning and Deep Learning Models for Classifying Brain Tumors Using MRI Images |
Scientific Report, Nature| I.F.: 3.8, Q1 |
2025 |
Journal |
6 |
Maaz, M. F. Ahamed et al., |
Deep Learning Based Smart Bin for Efficient Sorting of Recyclable, Non-Recyclable, and Compostable Materials |
International Conference on Computer and Information Technology (25th ICCIT) |
2025 |
Conference |
7 |
M. F. Ahamed et al., |
Malaria Parasite Classification from RBC Smears Using Lightweight Parallel Depthwise Separable CNN and Ridge Regression ELM by Integrating SHAP Techniques |
Scientific Report, Nature| IF: 3.8, Q1 | (Under Review) |
2024 |
Journal |
8 |
M. Nahiduzzaman, M. F. Ahamed, N. S. Alghamdi, and S. M. R. Islam |
SHAP-Guided Gastrointestinal Disease Classification with Lightweight Parallel Depthwise Separable CNN and Ridge Regression ELM |
Neural Computing & Application, Springer| IF: 4.5, Q1 | (Under Review) |
2024 |
Journal |
9 |
M. F. Ahamed, A. Salam, M. Nahiduzzaman, M. A. Al-Wadud, S. M. R Islam |
Streamlining Plant Disease Diagnosis with Convolutional Neural Networks and Edge Devices |
Neural Computing & Application, Springer| IF: 4.5, Q1 |
2024 |
Journal |
10 |
M. F. Ahamed et al. |
Automated Colorectal Polyps Detection from Endoscopic Images using MultiResUNet Framework with Attention Guided Segmentation |
Human-Centric Intelligent Systems (HCIN), Springer |
2024 |
Journal |
11 |
M. F. Ahamed et al. |
Optimizing Skin Lesion Segmentation with UNet and Attention-Guidance Utilizing Test Time Augmentation |
6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), Dhaka, Bangladesh |
2024 |
Conference |
12 |
M. F. Munwar, M. A. Ahamed et al., |
Object Detection using Machine Learning: A Comprehensive Review of Techniques and Applications |
International Journal of Biomedical Imaging, hindawi | IF: 8.11 |
2024 |
Journal |
13 |
Md. Faysal Ahamed et al. |
Interpretable deep learning architecture for gastrointestinal disease detection: A Tri-stage approach with PCA and XAI |
Computers in Biology and Medicine, Elsevier | I.F.: 7.0, Q1 |
2024 |
Journal |
14 |
M. F. Ahamed, M. R. Islam et al., |
Automated Detection of Colorectal Polyp Utilizing Deep Learning Methods with Explainable AI |
IEEE ACCESS | I.F: 3.9, Q1 |
2024 |
Journal |
15 |
M. F. Ahamed et al., |
Detection of various Gastrointestinal Tract Diseases through Deep Learning method with Ensemble ELM and Explainable AI |
Expert Systems with Applications, Elsevier | IF: 7.5, Q1 |
2024 |
Journal |
16 |
M. F. Munwar, M. A. Ahamed et al., |
A Collaborative Federated Learning Framework for Lung and Colon Cancer Classifications |
Technologies, MDPI | IF: 4.2, Q1 | 2024 |
2024 |
Journal |
17 |
Z. A. K. Zihad, M. R. Islam, and M.F. Ahamed |
Denoising autoencoder-based soft K-medoid clustering for single-cell RNA sequence data |
International Conference on Computing Advancements (ICCA 2024) |
2024 |
Conference |
18 |
D. Zafrin, M.F. Ahamed, and M. R. Islam |
Lightweight CNN Approach for Multiclass Alzheimer Stage Classification from MRI Scans |
International Conference on Computing Advancements (ICCA 2024) |
2024 |
Conference |
19 |
P. Talukder, M. R. Islam, M.F. Ahamed, and S. Ghosh |
Bangla Speech Emotion Recognition Based on Audio Features Using CNN and LSTM |
International Conference on Computing Advancements (ICCA 2024) |
2024 |
Conference |
20 |
M.F. Islam, M.R. Islam, and M.F. Ahamed |
Efficient Self-Attention and Co-Attention within the Modified Graph Matching Attention Network for Visual Question Answering |
International Conference on Computing Advancements (ICCA 2024) |
2024 |
Conference |
21 |
N. Aman, M.R. Islam, M.F. Ahamed, and M. Ahsan |
Performance evaluation of various deep learning models in gait recognition using the CASIA-B dataset |
Technologies, MDPI | IF: 4.2, Q1 |
2024 |
Journal |
22 |
K. Thomas , M.A. Rahman ,W. Rohouma ,M.F. Ahamed ,F. Shafi ,M. Nahiduzzaman |
Comprehensive Fault Diagnosis of Three-Phase Induction Motors Using Synchronized Multi-Sensor Data Collection |
Scientific Data, Nature| I.F.: 5.6, Q1 | (Under Review) |
2024 |
Journal |
23 |
M. F. Ahamed et al., |
IRv2-Net: A Deep Learning Framework for Enhanced Polyp Segmentation Performance Integrating InceptionResNetV2 and UNet Architecture with Test Time Augmentation Techniques |
Sensors, MDPI | IF: 3.9, Q1 | 2023 |
2023 |
Journal |
24 |
M. F. Ahamed et al., |
A Review on Brain Tumor Segmentation Based on Deep Learning Methods with Federated Learning Techniques |
Computerized Medical Imaging and Graphics, Elsevier | IF: 5.7, Q1 |
2023 |
Journal |
25 |
O. Sarkar, M. R. Islam, M. K. Syfullah, M. T. Islam, M. F. Ahamed, M. Ahsan, and J. Haider |
An Empirical Multi-Classification Approach of Classifying Lung Affected Diseases Utilizing Multi-Scale CNN Model |
Technologies, MDPI | IF: 4.2, Q1 |
2023 |
Journal |
26 |
M. F. Ahamed, M. R. Islam, T. Hossain, K. Syfullah, and O. Sarkar |
Classification and segmentation on multi-regional brain tumors using volumetric images of MRI with customized 3D U-Net Framework |
Proceedings of International Conference on Information and Communication Technology for Development (ICICTD), pp. 223–234. |
2023 |
Book Chapter |
27 |
M. F. Ahamed, M. R. Islam, M. Nahiduzzaman, and M. E. H. Chowdhury |
Interpretible Deep Learning Model for Tuberculosis detection technique using X-ray images |
Proceedings of Surveillance, prevention, and control of infectious diseases: An AI perspective –Springer |
2023 |
Book Chapter |
28 |
P. Chowdhury, E. M. Eumi, O. Sarkar, M. F. Ahamed |
Bangla News Classification Using GloVe Vectorization, LSTM, and CNN |
Proceedings of the International Conference on Big Data, IoT, and Machine Learning. Lecture Notes on Data Engineering and Communications Technologies, vol 95. Springer, Singapore, 2023 |
2023 |
Book Chapter |
29 |
T. T. Khan, A. Hassan, M. F. Ahamed, and S. Islam |
Multi-label Bengali Abusive Comments Classification using Problem Transformation Method |
2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Mexico City, Mexico. |
2023 |
Conference |
30 |
O. Sarkar, M. F. Ahamed, T. T. Khan, M. K. Ghosh, and M. R. Islam |
An Experimental Framework of Bangla Text Classification for Analyzing Sentiment Applying CNN & BiLSTM |
2021 2nd International Conference for Emerging Technology (INCET), Belagavi, India, 2021, pp. 1-6 |
2021 |
Conference |
31 |
O. Sarkar, M. F. Ahamed, and P. Chowdhury |
Forecasting & Severity Analysis of COVID-19 Using Machine Learning Approach with Advanced Data Visualization |
2020 23rd International Conference on Computer and Information Technology (ICCIT)), Dhaka, Bangladesh, 2020, pp. 1-6 |
2020 |
Conference |
32 |
M. F. Ahamed, O. Sarkar, and A. Matin |
Instance Segmentation of Visible Cloud Images Based on Mask R-CNN Applying Transfer Learning Approach |
2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT), Dhaka, Bangladesh, 2020, pp. 257-262 |
2020 |
Conference |